振动基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列,
振动企业商机

3.2.2功能特点Ø具备断路器的振动、分合闸线圈和电机的电流、动静触头分合闸位移和位置等信号的监测功能;Ø具备振动、电流波形、位移曲线、压力变化等信号的记录和展示,自动计算峰值电流、电流上升速率、动作时间、动作时长、位移、分合闸位置、分合闸次数等参量;Ø监测主机/IED支持多通道信号同步和实时采集,通道数不小于8个(可定制);Ø支持历史数据与实测数据对比分析、不同通道测量数据的横向及纵向对比功能;Ø具有断电不丢失存储数据、复电自启动、自复位的功能,可连续监测、存储及导出1000次以上断路器动作数据;Ø断路器每次动作后,监测主机/IED主动评价断路器运行状态,并自动上传结果。断路器典型振动和储能电机电流信号及对应包络曲线如下图4所示。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统技术说明。电气设备振动监测时间

电气设备振动监测时间,振动

(3)基频信号能量比(E):100Hz基频分量时域信号能量占信号总能量的比值,计算公式如下公式2所示:公式2:基频信号能量比计算公式公式2中S1为100Hz基频分量的时域信号,Sj为原始信号,j为采样索引值。正常状态下,由于100Hz基频分量为声纹振动频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。(4)相关系数(r):正常状态与实时测得声纹振动信号频谱图之间的相似度,计算公式如下公式3所示:公式3:相关系数计算公式公式3中Xi和Yi分别为正常状态与实时测得声纹振动信号的频域分布,X和Y为对应信号的平均值,相关系数范围为0~1。正常运行时,相关系数应接近于1;存在故障时,信号频率分布发生改变,互相关系数减小。特高压振动监测缺陷杭州国洲电力科技有限公司相关的振动设备。

电气设备振动监测时间,振动

其中,l**信号递归图中斜对角线的长度,P(l)**对角线长度为l的对角线的条数,Im**斜对角线的最小长度。DET值是一个介于0和I之间的数,对于正常运行的GIS而言,其机械结构确定性很高,其DET值接近1。(6)能量相似度(EDR):能量相似度分析用于衡量不同负载条件下各个监测点的振动能量相似性,振动能量分布特性的改变能够反映GIS内部机械结构的变化,其定义的公式如下:EDR=1Mi=1Mvi-μ×100%其中,vi为各频率信号归一化能量,μ为能量平均值。能量相似度分析通过对比测量信号的能量与目标能量差异来判断GIS振动是否异常。当某个测点的EDR值突然变大,这意味着该测点附近的机械结构可能出现异常。

(4)时频能量分布矩阵(ATF图谱)获取声纹振动信号时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态对比。下图13为正常状态下的声纹振动信号的时频能量矩阵。图13声纹振动信号的时频能量矩阵3.3.2绕组及铁芯运行状态分析下图14(a)为变压器运行时的绕组及铁芯声纹振动的时域信号。为更直观的分析绕组及铁芯运行状态,采用频域法分析声纹振动信号,实现变压器在线运行状态下的监测与诊断。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统传感器。

电气设备振动监测时间,振动

3.3信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图8所示。通过分解时域内典型信号区间,可有效判断分接开关驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析分接开关的运行状态。然而,以上通过典型信号分析判断分接开关的运行状态需要丰富的实践经验,为方便技术人员快速完成诊断任务,需通过多种算法更直观、准确的判断开关状态。变压器声纹振动监测与诊断系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号对比等多种核芯算法,实现OLTC***、有效、准确的状态诊断和早期故障监测与诊断,降低变压器运行的故障风险。杭州国洲电力科技有限公司的核主要团队介绍与技术研发实力。高压振动应用前景

GZAFV-01型声纹振动监测系统(变压器、电抗器)的智能评估和故障预警。电气设备振动监测时间

能量分布曲线

基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。

时频能量分布矩阵(ATF图谱)

获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 电气设备振动监测时间

与振动相关的**
信息来源于互联网 本站不为信息真实性负责