GZAFV-01系统的IED/主机形态分便携式带电监测(分体机,如上图3.3、一体机)、长期固定在线监测式(标准1U的IED,如上图3.3)等机型。其中,便携式一体机结构轻巧,适用于带电巡检、故障诊断;标准监测单元与壁挂式监测单元适用于长期在线监测与故障诊断。6.12020年10月20日,我公司荣获国网公司设备部的邀请,委派技术智造中心总监王国明博士参与国网设备部组织的关于智慧变电站技术方案审查会,向与会的国网公司设备部、各省公司设备部及各省电科院的领导和**们做了《声纹振动监测技术在变电站主设备智慧型综合监测中的作用和实施方案》的汇报,获与会领导和**们的高度认可。杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。智能振动监测修理

信号包络分析
为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析
信号包络重合度比对分析
信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 杭州在线振动监测技术应用杭州国洲电力科技有限公司振动声学指纹在线监测技术的政策支持背景。

AFV 信号分析法在 OLTC 状态监测中的应用,基于对其内部物理过程的深入理解。OLTC 内部触头在分 / 合过程中,不仅会受到机械应力的作用,还会受到电气因素的影响,如电弧的产生。这些因素会导致触头材料的消耗和变形,进而改变 OLTC 的振动特性。当触头出现接触不良时,电弧产生的频率和能量会增加,引起的振动信号也会更加复杂。AFV 传感器能够准确捕捉到这些信号变化,通过对信号的分析处理,我们可以判断 OLTC 的故障类型和严重程度,为设备的维护和管理提供科学指导,提高电力系统的运行效率。
AFV 信号分析法为 OLTC 的状态监测提供了一种精细、高效的途径。OLTC 在运行过程中,触头的分 / 合操作频繁,这对其内部结构的稳定性提出了极高要求。触头的任何异常变化,如接触不良、磨损加剧等,都会在 AFV 信号中留下痕迹。当触头接触不良时,电流通过时会产生不稳定的电弧,这不仅会导致触头进一步损坏,还会使 OLTC 的振动特性发生***改变。AFV 传感器能够敏锐捕捉到这些信号变化,经过数据分析处理,我们可以清晰地判断出 OLTC 的故障状态,为设备的安全运行保驾护航。GZAFV-01型声纹振动监测系统的基本功能。

AFV 信号分析法在 OLTC 状态监测中的应用,基于对其内部故障与振动特性关系的深入研究。OLTC 内部触头在长期使用过程中,由于机械磨损和电气腐蚀,会出现接触电阻增大、触头压力不均匀等问题。这些问题会导致 OLTC 在切换时产生的脉冲冲击力发生变化,进而影响其振动特征。例如,当触头接触电阻增大时,切换瞬间产生的电弧能量增加,引起的振动信号幅值也会相应增大。通过 AFV 传感器对这些振动信号的监测和分析,我们可以准确判断 OLTC 是否存在触头相关故障,为设备的可靠运行提供有力保障。杭州国洲电力科技有限公司振动声学指纹在线监测功能的多场景适用性。杭州在线振动监测技术应用
杭州国洲电力科技有限公司振动声学指纹在线监测技术的国际合作案例。智能振动监测修理
运用 AFV 信号分析法判断 OLTC 的状态,需要关注 OLTC 振动信号的多维度特征。OLTC 切换时产生的振动信号,其频率、幅值、相位等特征都与设备的运行状态密切相关。例如,当 OLTC 出现触头磨损故障时,振动信号的频率分布会发生变化,高频成分会增多;幅值也会随着磨损程度的加深而增大。同时,信号的相位可能会发生偏移,这反映了内部机械结构的相对位置变化。通过对这些多维度特征的综合分析,我们可以更加准确地判断 OLTC 的故障类型和状态,为设备的维修和保养提供更***的信息,确保电力系统的可靠运行。智能振动监测修理