电力系统中的开关类设备主要包括GIS、AIS(敞开式断路器)、GIS/敞开式的隔离开关、开关柜断路器等。各类开关设备的材料、工艺、设计、安装过程中的缺陷以及频繁动作极易引起机械故障,严重时更会导致电气火灾、停电等事故,现有状态检修方式的试验周期长、耗费人力物力、检修效率低等缺点,较大地影响设备正常运行。GIS是当今输电网络中一种应用***的电气设备。通过将变电站中断路器、隔离开关、接地开关、PT、CT、避雷器、连接母线、电缆终端、进出线套管等一次设备经过优化设计并有序地结合为整体,在金属壳内封装起来,内部充SF6气体作为灭弧和绝缘介质组成的封闭组合电器。与传统的敞开式相比较,GIS具有占地面积小、可靠性高、安全性强、运行维护工作量很小等优点,因而被大量使用在重要负荷、枢纽变电站中。但由于其采用全封闭结构,一旦发生故障,影响范围大并且难以准确定位及快速抢修,将会带来严重的经济损失。随着GIS逐步在特高压输电网络推广应用,设备故障所造成的影响将进一步加大。GZAFV-01型声纹振动监测系统(开关设备)数据可视化和远程监控。变压器振动声学指纹在线监测故障诊断

从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。杭州GZAF-1000T系列振动声学指纹在线监测设备信息杭州国洲电力科技有限公司振动声学指纹在线监测技术的客户反馈分析。

GIS及敞开式的隔离开关监测功能特性◆采用加速度传感器及电流传感器监测隔离开关声纹振动及电机电流信号。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有诊断分析功能:可对隔离开关状态进行诊断,并上传原始数据及分析结果。◆具有断电不丢失存储数据、复电自启动、自复位的功能,可连续监测、存储及导出功能,可够存储1000次以上的操作数据,并具备批量处理数据功能。◆具备声纹振动及电机电流信号波形、包络分析、时频图谱等展示功能。◆自动提取动/静触头的分/合闸动作时间、电机峰值电流、电机电流的燃弧时间及抖动高幅值关键特征、声纹振动脉动关键特征等参量。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。
1.1公司概述杭州国洲电力科技有限公司,成立于2013年5月,是专注于综合智慧能源服务领域内发、输、变、配、用、储等全过程的电力设备参量监测、数据分析和状态评价技术的研、产、销、服四位一体的****,致力于为领域内各科研院所、专业院校、设备管理、工程服务、电能生产、设备制造等合作方提供质量的体系化技术方案。我公司于2014年把研发部、生产部和技术服务部融合打造成“技术智造中心”,并在中心组建了专注于局部放电和声纹振动监测技术的两大课题组,成功研制出自主知识产权的、先进的局部放电和声纹振动监测技术。我公司的技术近10年在投运站场、制造厂区的电力设备上大量的持续运用,为电网的可靠运行提供了逐年增长的技术支持,特别是在变压器(电抗器)、开关设备和输电设备等电力设备的绝缘、机械的状态分析与诊断方面,凭借前沿的软/硬件技术与先进的监测方法,为电力设备的高效运检提供了质量的体系化技术方案。杭州国洲电力科技有限公司振动声学指纹在线监测技术的经济效益分析。

电力系统中的高压开关类设备主要包括GIS(气体绝缘金属封闭开关设备)、AIS(敞开式断路器)、GIS /敞开式的隔离开关、开关柜断路器等。各类开关设备的材料、工艺、设计、安装过程中的缺陷以及频繁动作极易引起机械故障,严重时更会导致电气火灾、停电等事故,现有状态检修方式的试验周期长、耗费人力物力、检修效率低等缺点,较大地影响设备正常运行。
基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。 杭州国洲电力科技有限公司的团队介绍与技术研发实力。杭州GZAF-1000T系列振动声学指纹在线监测设备信息
杭州国洲电力科技有限公司振动声学指纹在线监测技术的用户操作指南。变压器振动声学指纹在线监测故障诊断
3.3.2绕组及铁芯运行状态分析下图3.10a为变压器运行时绕组及铁芯的声纹振动时域信号。为更直观地分析绕组及铁芯运行状态,采用频域法分析声纹振动信号。如下图3.10b所示,基于声纹振动信号的频域分布,提取峰值频率、总谐波畸变率、基频能量比、互相关系数特征参量作为分析参数。各特征参量定义及解释如下:
3.3.2.1峰值频率:频谱图中比较大幅值对应的频率值。3.3.2.2总谐波畸变率(TotalHarmonicDistortion,THD)所有50Hz整数倍谐波分量的有效值与基频100Hz分量有效值的比值,计算公式:THD=i=0nVi2V1,其中V1为100Hz基频分量有效值,Vi为各谐波分量有效值,i为频率索引值。正常状态下,由于100Hz基频分量为振动频谱图的主要成分,总谐波畸变率应较小;存在故障时,谐波分量增加且峰值频率发生偏移,总谐波畸变率变大 变压器振动声学指纹在线监测故障诊断