速度和加速度是决定匀胶获得薄膜厚度的关键因素。衬底的旋转速度控制着施加到树脂上的离心力和树脂上方空气的湍流度。衬底由低速向旋转速度的加速也会极大地影响薄膜的性能。由于树脂在开始旋转的几圈内就开始溶剂挥发过程,因此控制加速阶段非常重要这个阶段光刻胶会从中心向样品周围流动并铺展开。在许多情况下,光刻胶中高达50%的基础溶剂会在溶解的几秒钟内蒸发掉。因此,使用“快速”工艺技术,在很短的时间内将光刻胶从样品中心甩到样品边缘。在这种加速度驱动材料向衬底边缘移动,使不均匀的蒸发小化,并克服表面张力以提高均匀性。高速度,高加速步骤后是一个更慢的干燥步骤和/或立即停止到0rpm。光刻过程中需避免光线的衍射和散射。河南材料刻蚀平台

基于掩模板图形传递的光刻工艺可制作宏观尺寸的微细结构,受光学衍射的极限,适用于微米以上尺度的微细结构制作,部分优化的光刻工艺可能具有亚微米的加工能力。例如,接触式光刻的分辨率可能到达0.5μm,采用深紫外曝光光源可能实现0.1μm。但利用这种光刻技术实现宏观面积的纳米/亚微米图形结构的制作是可欲而不可求的。近年来,国内外比较多学者相继提出了超衍射极限光刻技术、周期减小光刻技术等,力求通过曝光光刻技术实现大面积的亚微米结构制作,但这类新型的光刻技术尚处于实验室研究阶段。MEMS材料刻蚀服务光刻技术是半导体制造的完善工艺之一。

高精度的微细结构可以通过电子束直写或激光直写制作,这类光刻技术,像“写字”一样,通过控制聚焦电子束(光束)移动书写图案进行曝光,具有比较高的曝光精度,但这两种方法制作效率极低,尤其在大面积制作方面捉襟见肘,目前直写光刻技术适用于小面积的微纳结构制作。近年来,三维浮雕微纳结构的需求越来越大,如闪耀光栅、菲涅尔透镜、多台阶微光学元件等。据悉,某公司新上市的手机产品中人脸识别模块就采用了多台阶微光学元件,以及当下如火如荼的无人驾驶技术中激光雷达光学系统也用到了复杂的微光学元件。这类精密的微纳结构光学元件需采用灰度光刻技术进行制作。直写技术,通过在光束移动过程中进行相应的曝光能量调节,可以实现良好的灰度光刻能力。
氧等离子去胶是利用氧气在微波或射频发生器的作用下产生氧等离子体,具有活性的氧等离子体与有机聚合物发生氧化反应,是的有机聚合物被氧化成水汽和二氧化碳等排除腔室,从而达到去除光刻胶的目的,这个过程我们有时候也称之为灰化或者扫胶。氧等离子去胶相比于湿法去胶工艺更为简单、适应性更好。市面上常见氧等离子去胶机按照频率可分为微波等离子去胶机和射频等离子去胶机两种,微波等离子去胶机的工作频率更高,更高的频率决定了等离子体拥有更高的激子浓度、更小的自偏压,更高的激子浓度决定了去胶速度更快,效率更高;更低的自偏压决定了其对衬底的刻蚀效应更小,也意味着去胶过程中对衬底无损伤,而射频等离子去胶机其工作原理与刻蚀机相似,结构上更加简单。光刻胶的固化过程需要精确控制温度和时间。

刻胶显影完成后,图形就基本确定,不过还需要使光刻胶的性质更为稳定。硬烘干可以达到这个目的,这一步骤也被称为坚膜。在这过程中,利用高温处理,可以除去光刻胶中剩余的溶剂、增强光刻胶对硅片表面的附着力,同时提高光刻胶在随后刻蚀和离子注入过程中的抗蚀性能力。另外,高温下光刻胶将软化,形成类似玻璃体在高温下的熔融状态。这会使光刻胶表面在表面张力作用下圆滑化,并使光刻胶层中的缺陷减少,这样修正光刻胶图形的边缘轮廓。光刻过程中,光源的纯净度至关重要。广州材料刻蚀厂商
光刻胶用原材料更偏向于客制化产品。河南材料刻蚀平台
光源的稳定性是光刻过程中图形精度控制的关键因素之一。光源的不稳定会导致曝光剂量不一致,从而影响图形的对准精度和质量。现代光刻机通常配备先进的光源控制系统,能够实时监测和调整光源的强度和稳定性,以确保高精度的曝光。此外,光源的波长选择也至关重要。波长越短,光线的分辨率就越高,能够形成的图案越精细。因此,随着半导体工艺的不断进步,光刻机所使用的光源波长也在逐渐缩短。从起初的可见光和紫外光,到深紫外光(DUV),再到如今的极紫外光(EUV),光源波长的不断缩短为光刻技术提供了更高的分辨率和更精细的图案控制能力。河南材料刻蚀平台