配体交换作用即:氧化石墨烯上原有的配位体被溶液中的金属离子所取代,并以配位键的形式生成不溶于水的配合物,**终通过简单的过滤即可从溶液中去除。Tang等47对Fe与GO(质量比为1:7.5)复合及Fe与Mn(摩尔比为3∶1)复合的氧化石墨烯/铁-锰复合材料(GO/Fe-Mn)进行了吸附研究,通过一系列的实验表明,氧化石墨烯对Hg2+的吸附机理主要是配体交换作用,其比较大吸附量达到32.9mg/g。Hg2+可在水环境中形成Hg(OH)2,与铁锰氧化物中的活性点位(如-OH)发生配体交换作用,从而将Hg(OH)2固定在氧化石墨烯/铁-锰复合材料上,达到去除水环境中Hg2+的目的。氧化石墨烯经一定功能化处理后可发挥更大的性能优势,例如大比表面积、高敏感度和高选择性等,这些特性对于氧化石墨烯作为吸附剂吸附水环境中的金属离子有着重要的作用。GO的掺量对于水泥复合材料的提升效果也有差异。哪些氧化石墨价格
氧化石墨烯(GO)的光学性质与石墨烯有着很大差别。石墨烯是零带隙半导体,在可见光范围内的光吸收系数近乎常数(~2.3%);相比之下,氧化石墨烯的光吸收系数要小一个数量级(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系数是波长的函数,其吸收曲线峰值在可见光与紫外光交界附近,随着波长向近红外一端移动,吸收系数逐渐下降。对紫外光的吸收(200-320nm)会表现出明显的π-π*和n-π*跃迁,而且其强度会随着含氧基团的出现而增加[11]。氧化石墨烯(GO)的光响应对其含氧基团的数量十分敏感[12]。随着含氧基团的去除,氧化石墨烯(GO)在可见光波段的的光吸收率迅速上升,**终达到2.3%这一石墨烯吸收率的上限。黑龙江关于氧化石墨氧化石墨是由牛津大学的化学家本杰明·C·布罗迪在1859年用氯酸钾和浓硝酸混合溶液处理石墨的方法制得。
尽管氧化石墨烯自身可以发射荧光,但有趣的是它也可以淬灭荧光。这两种看似相互矛盾的性质集于一身,正是由于氧化石墨烯化学成分的多样性、原子和电子层面的复杂结构造成的。众所周知,石墨形态的碳材料可以淬灭处于其表面的染料分子的荧光,同样的,在GO和RGO中存在的SP2区域可以淬灭临近一些物质的的荧光,如染料分子、共轭聚合物、量子点等,而GO的荧光淬灭效率在还原后还有进一步的提升。有很多文章定量分析了GO和RGO的荧光淬灭效率,研究表明,荧光淬灭特性来自于GO、RGO与辐射发生体之间的荧光共振能量转移或者非辐射偶极-偶极耦合。
GO作为新型的二维结构的纳米材料,具有疏水性中间片层与亲水性边缘结构,特殊的结构决定其优异的***特性。GO的***活性主要有以下几种机制:(1)机械破坏,包括物理穿刺或者切割;(2)氧化应激引发的细菌/膜物质破坏;(3)包覆导致的跨膜运输阻滞和(或)细菌生长阻遏;(4)磷脂分子抽提理论。GO作用于细菌膜表面的杀菌机制中,主要是GO与起始分子反应(MolecularInitiatingEvents,MIEs)[51]的作用(图7.3),包括GO表面活性引发的磷脂过氧化,GO片层结构对细菌膜的嵌入、包裹以及磷脂分子的提取,GO表面催化引发的活性自由基等。另外,GO的尺寸在上述不同的***机制中对***的影响也是不同的,机械破坏和磷脂分子抽提理论表明尺寸越大的GO,能表现出更好的***能力,而氧化应激理论则认为GO尺寸越小,其***效果越好。氧化石墨烯(GO)的比表面积很大,厚度小。
氧化石墨烯/还原氧化石墨烯在光电传感领域的应用,其基本依据是本章前面部分所涉及到的各种光学性质。氧化石墨烯因含氧官能团的存在具备了丰富的光学特性,在还原为还原氧化石墨烯的过程中,不同的还原程度又具备了不同的性质,从结构方面而言,是其SP2碳域与SP3碳域相互分割、相互影响、相互转化带来了如此丰富的特性。也正是这些官能团的存在,使得氧化石墨烯可以方便的采用各种基于溶液的方法适应多种场合的需要,克服了CVD和机械剥离石墨烯在转移和大面积应用时存在的缺点,也正是这些官能团的存在,使其便于实现功能化修饰,为其在不同场景的应用提供了一个广阔的平台。氧化石墨中存在大量亲水基团(如羧基与羟基),在水溶液中容易分散。乌兰察布制造氧化石墨
减少面内难以修复的孔洞,从而提升还原石墨烯的本征导电性。哪些氧化石墨价格
在氧化石墨烯的纳米孔道中,分布着氧化区域和纳米sp2杂化碳区域,水分子在通过氧化区域时能够与含氧官能团形成氢键,从而增加了水流动阻力,而在杂化碳区域水流阻力很小。芳香碳网中形成的大多数通路被含氧官能团有效阻挡,从而分离海水中Na+和Cl-等小分子物质12,13。相比于其他纳米材料,GO为快速水输送提供了较多优越性能,如光滑无摩擦的表面,超薄的厚度和超高的机械强度,所有这些特性都提高了水的渗透性。前超滤膜、纳滤膜、反渗透膜等膜技术,已经成功地应用到水处理的各个领域,引起越来越多的企业家和科学家的关注8-11。GO薄膜在海水淡化领域的应用主要是去除海水中的盐离子,探究GO薄膜的离子传质行为具有更为重要的实用意义。哪些氧化石墨价格