数控刀具基本参数
  • 品牌
  • 株洲钻石,四川成量,日本泰珂洛,日本OSG,韩国韩松
  • 型号
  • 适用机床
  • 车床
数控刀具企业商机

由于数控刀具应用于数控机床,因此数控刀具的选择原则主要考虑以下几点:

①刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄;

②选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应;

③在进行自由曲面(模具)加工时,由于球刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本降低;

④在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。 陶瓷刀具材料种类一般可分为氧化铝基陶瓷、氮化硅基陶瓷、复合氮化硅一氧化铝基陶瓷三大类。厦门泰珂洛数控刀具推荐

厦门泰珂洛数控刀具推荐,数控刀具

刀具按工件加工表面的形式可分为五类。

加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;

孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;

螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;

齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;

切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。

此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。

通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;

成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;

展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。 天河数控刀具供应商加工毛坯表面或粗加工孔时,可选取镶硬质合軔片的玉米铣刀。

厦门泰珂洛数控刀具推荐,数控刀具

按制造工艺不同,高速钢可分为熔炼高速钢和粉末冶金高速钢。

①熔炼高速钢:普通高速钢和高性能高速钢都是用熔炼方法制造的。它们经过冶炼、铸锭和镀轧等工艺制成刀具。熔炼高速钢容易出现的严重问题是碳化物偏析,硬而脆的碳化物在高速钢中分布不均匀,且晶粒粗大(可达几十个微米),对高速钢刀具的耐磨性、韧性及切削性能产生不利影响。

②粉末冶金高速钢(PMHSS):粉末冶金高速钢(PMHSS)是将高频感应炉熔炼出的钢液,用高压氩气或纯氮气使之雾化,再急冷而得到细小均匀的结晶组织(高速钢粉末),再将所得的粉末在高温、高压下压制成刀坯,或先制成钢坯再经过锻造、轧制成刀具形状。与熔融法制造的高速钢相比,PMHSS具有优点是:碳化物晶粒细小均匀,强度和韧性、耐磨性相对熔炼高速钢都提高不少。在复杂数控刀具领域PMHSS刀具将会进一步发展而占重要地位。典型牌号,如F15、FR71、GFl、GF2、GF3、PT1、PVN等,可用来制造大尺寸、承受重载、冲击性大的刀具,也可用来制造精密刀具。

硬质合金刀具的种类:

·按主要化学成分区分,硬质合金可分为碳化钨基硬质合金和碳(氮)化钛(TiC(N))基硬质合金。

①碳化钨基硬质合金包括钨钴类(YG)、钨钴钛类(YT)、添加稀有碳化物类(YW)三类,它们各有优缺点,主要成分为碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)、碳化铌(NbC)等,常用的金属粘接相是Co。

②碳(氮)化钛基硬质合金是以TiC为主要成分(有些加入了其他碳化物或氮化物)的硬质合金,常用的金属粘接相是Mo和Ni。


·ISO(国际标准化组织)将切削用硬质合金分为三类:

①K类,包括Kl0~K40,相当于我国的YG类(主要成分为WC-Co)。

②P类,包括P01~P50,相当于我国的YT类(主要成分为WC-TiC-Co)。

③M类,包括M10~M40,相当于我国的YW类(主要成分为WC-TiC-TaC(NbC)-Co)。各个牌号分别以01~50之间的数字表示从高硬度到大韧性之间的一系列合金。 PCD刀具适合于对Al、Mg、Cu等有色金属材料及其合金和非金属材料的加工。

厦门泰珂洛数控刀具推荐,数控刀具

现代化切削工具的制作工艺也在不断更新,特别是在高速、高精度切削和纳米表面加工方面,有很多创新的技术。例如电火花加工技术、超精密加工技术和纳米制造技术等,都可以用来制造出更加精细的切削工具。此外,还有一些新型材料被应用到切削工具制造中,如超硬合金、纳米复合材料和陶瓷材料等,这些材料的物理和化学特性使切削工具更加坚硬、抗磨损性更强、散热性更好,从而提高工件加工的精度和效率。现代化切削工具除了精度和效率上的提高,还有诸多优点。例如,它们可以更好地应对不同的材料和形状,实现不同的加工目标,同时保证工件的表面质量和加工精度。此外,现代化切削工具可以自动地适应加工变化,避免重复设置和调整,从而减少了操作人员的劳动强度和人为失误的风险。因此,现代化切削工具已经成为各类制造业的必备工具。虽然现代化切削工具的制作和应用充满了挑战,但在技术发展和需求驱动下,它仍然具有广大的应用前景。未来,随着技术的创新和经验的积累,现代化切削工具将会变得更加高效、可靠、智能化和个性化,带来更多的机会和发展空间。在通用型高速钢成分中再增加一些含碳量、含钒量及添加Co、Al等合金元素,可提高它的耐热性和耐磨性。山西株洲钻石数控刀具生产

数控刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。厦门泰珂洛数控刀具推荐

刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前’三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明极早的文献记载是在1822年,但直到1864年才作为商品生产。那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大‘’大提高。厦门泰珂洛数控刀具推荐

与数控刀具相关的**
与数控刀具相关的标签
信息来源于互联网 本站不为信息真实性负责