现有物理打磨技术,接触式加工,磨损基石,需要切削油,加工后需要清洗,异形件打磨和局部打磨有难度。纳秒激光打磨有以下问题:产生细微裂纹,熔化-再凝固产生热变形,表面物性发生变化,周围会产生多个颗粒。飞秒激光打磨:改善现有打磨技术的问题-热影响极小,可以局部打磨,异形件打磨,不需要化学药剂-细微裂纹极少化表面物理特性变化少,在不改变物性值的情况下,提高表面粗糙度。高功率激光打磨:测量高度→获取高度数据→转换成面数据→去除表面凸起中等功率,利用中等功率激光可以刻画低功率时具有,清洗效果;抛光效果(也有去除微孔边缘毛刺的效果)抛光后,[AOI(自动光学检查)]对孔不良进行检测(手动或自动)(光学相机扫描仪)材料的边缘测量和修正材料位置误差。非常适合异形件打磨、抛光。局部打磨抛光。超精密加工过程中需实时监测切削力,避免过大应力导致零件变形。工业超精密MLCC轮刀
一般来说,抛光是指使用陶瓷浆料的机械抛光,以及主要用于工业领域和蓝宝石抛光。激光抛光技术在技术上经常被提及,但并未应用于工业领域。这使我们的微泰感到抛光技术的需求,以便在精细磨削后对精细的平面进行校正。我们与国际的研究机构合作,开发了激光抛光设备并将其应用于工业领域。激光抛光技术是微泰的一项自主技术,它被广泛应用于大面积抛光和磨削后精细校正以及图案化技术。激光抛光特点是可以抛光异形件,复杂的图案,大面积均衡抛光,局部选择性抛光,抛光机动灵活,抛光时间短等特点。激光抛光原理和方法:1.扫描测量被加工表面台阶;2.测量结果转化制作等高线数据;3.按高度剖切曲面,进行打磨抛光;4.每个表面的激光抛光不同条件下MAX限度地减少因间隙和齐平造成的加工错误。高功率激光打磨:测量高度→获取高度数据→转换成面数据→去除表面凸起中等功率,利用中等功率激光可以刻画低功率时具有,清洗效果;抛光效果高精度超精密晶圆卡盘超精密加工的材料去除率需严格控制,平衡加工效率与表面质量。

超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1µm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。超精密加工是指亚微米级(尺寸误差为0.3~0.03µm,表面粗糙度为Ra0.03~0.005µm)和纳米级(精度误差为0.03µm,表面粗糙度小于Ra0.005µm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。
(2)超精密异形零件加工。例如航空高速多辨防滑轴承的内滚道/激光陀螺微晶玻璃腔体,都是用超精密数控磨削加工而成的。陀螺仪框架与平台是形状复杂的高精度零件,是用超精密数控铣床加工的。(3)超精密光学零件加工。例如激光陀螺的反射镜的平面度达0.05μm,表面粉糙度Rα达0.001μm、它是由超精密抛研加工、再进行镀膜而成,要求反射率达99.99%。—些高精度瞄准系统要求小型化,所以用少量非球面镜来代替复杂的光学系统。这些非球镜是用超精密车、磨、研、抛加工而成的。近期,二元光学器件的理论研究进展很大,二元光学器件的制造设备是专门的超精密加工设备。在民用方面,隐形眼镜就是用超精密数控车床加工而成的。计算机的硬盘、光盘、复印机等高技术产品的很多精密零件都是用超精密加工手段制成的。超精密加工的工艺参数需通过大量试验优化,实现精度与效率的平衡。

微泰,经验丰富的工程师团队在制造高精度零件方面拥有精湛的专业技能,并以精密的精密加工技术、严格的公差、复杂的设计图纸分析和周到的加工策略,生产出满足客户期望的精密较好零件。它还能准确、快速地应对生产过程中可能出现的意外问题,并对新技术和新材料的不断学习和前沿技术信息进行持续投资。微泰,拥有高精度的三维接触测量仪和各种精密测量设备,生产精密零件和模型组装产品,以准确反映客户的需求,并通过建立系统的质量控制和检测系统,将质量作为管理的首要任务。超精密加工可以满足客户的需求。我们先进的精密加工技术可加工难于加工的材料,可帮助提高产品性能,同时提供针对不同客户需求的优化产品,包括降低成本和极短的交货期。微泰在精密零件制造和模组装配方面具有高水平的专业知识和高质量。我们重视与客户的开放沟通和合作,并通过共同努力,保持持续发展的强大合作伙伴关系。超精密加工后的零件需进行稳定性处理,防止使用过程中因应力释放变形。超快激光超精密抛光
超精密加工对操作人员技能要求极高,需熟悉设备特性与材料加工规律。工业超精密MLCC轮刀
超精密加工技术的发展趋势向更高精度方向发展:由现在的亚微米级向纳米级进军,以期达到移动原子的目的,实现原子级加工。向大型化方向发展:研制各类大型的超精密加工设备,以满足航空、航天、通信和安全的需要。向微型化方向发展:以适应飞速发展的微机械、集成电路的需要。向超精结构、多功能、光、加工检测一体化等方向发展:多采用先进的检测监控技术实时误差补偿。新工艺和复合加工技术不断涌现:使加工的材料的范围不断扩大1。工业超精密MLCC轮刀