无须引线框架的BGA:1、定义,LSI芯片四周引出来的像蜈蚣脚一样的端子为引线框架,而BGA(Ball Grid Array)无须这种引线框架。2、意义:① 随着LSI向高集成度、高性能不断迈进,引脚数量不断增加(如DIP与QFP等引线框架类型的封装,较大引脚数、引脚间距、切筋使用的刀片厚度与精度均达到极限);② 引线框架的引脚越小,弯曲问题就越严重,会严重妨碍后续线路板的安装,因此需要寻求不需要引线端子的封装,即BGA类型的封装(需在封装树脂底板上植球(焊锡球),以及分割封装的工序)。SIP与SOC,SOC(System On a Chip,系统级芯片)是将原本不同功能的IC,整合到一颗芯片中。北京陶瓷封装
此外,在电源、车载通讯方面也开始进行了 SiP 探索和开发实践。随着电子硬件不断演进,过去产品的成本随着电子硬件不断演进,性能优势面临发展瓶颈,而先进的半导体封装技术不只可以增加功能、提升产品价值,还有效降低成本。SiP 兼具低成本、低功耗、高性能、小型化和多元化的优势。2021 年,全球 SiP 市场规模约为 150 亿美元;预计 2021-2026 年,全球 SiP 市场年均复合增长率将在 5.8% 左右,到 2026 年市场规模将达到 199 亿美元左右。受益于人工智能、物联网、5G 等产业快速发展,预计未来 5 年,可穿戴智能设备、IoT 物联网设备将会是推动全球 SiP 市场增长的重要动力。目前全世界封装的产值只占集成电路总值的 10%,当 SiP 技术被封装企业掌握后,产业格局就要开始调整,封装业的产值将会出现一个跳跃式的提高。SiP 在应用终端产品领域(智能手表、TWS、手机、穿戴式产品、5G 模组、AI 模组、智能汽车)的爆发点也将愈来愈近。北京陶瓷封装一个SiP可以选择性地包含无源器件、MEMS、光学元件以及其他封装和设备。
随着物联网时代来临,全球终端电子产品渐渐走向多功能整合及低功耗设计,因而使得可将多颗裸晶整合在单一封装中的SIP技术日益受到关注。除了既有的封测大厂积极扩大SIP制造产能外,晶圆代工业者与IC基板厂也竞相投入此一技术,以满足市场需求。早前,苹果发布了较新的apple watch手表,里面用到SIP封装芯片,从尺寸和性能上为新手表增色不少。而芯片发展从一味追求功耗下降及性能提升,转向更加务实的满足市场的需求。根据国际半导体路线组织(ITRS)的定义: SiP技术为将多个具有不同功能的有源电子元件与可选无源器件,以及诸如MEMS或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。SiP技术特点:1、组件集成,SiP可以包含各种类型的组件,如:数字和模拟集成电路、无源元件(电阻、电容、电感)、射频(RF)组件、功率管理模块、内存芯片(如DRAM、Flash)、传感器和微电机系统(MEMS)。
PiP (Package In Package), 一般称堆叠封装又称封装内的封装,还称器件内置器件,是在同一个封装腔体内堆叠多个芯片形成3D 封装的一种技术方案。封装内芯片通过金线键合堆叠到基板上,同样的堆叠,通过金线再将两个堆叠之间的基板键合,然后整个封装成一个元件便是PiP(器件内置器件)。PiP封装技术较初是由KINGMAX公司研发的一种电子产品封装技术,该技术整合了PCB基板组装及半导体封装制作流程,可以将小型存储卡所需 要的零部件(控制器、闪存集成电路、基础材质、无源计算组件)直接封装,制成功能完整的Flash存储卡产 品。PiP一体化封装技术具有下列技术优势:超大容量、高读写速度、坚固耐用、强防水、防静电、耐高温等, 因此常运用于SD卡、XD卡、MM卡等系列数码存储卡上。Sip系统级封装通过将多个裸片(Die)和无源器件融合在单个封装体内,实现了集成电路封装的创新突破。
由于物联网“智慧”设备的快速发展,业界对能够在更小的封装内实现更多功能的系统级封装 (SiP) 器件的需求高涨,这种需求将微型化趋势推向了更高的层次:使用更小的元件和更高的密度来进行组装。 无源元件尺寸已从 01005 ( 0.4 mm× 0.2 mm) 缩小到 008004( 0.25 mm×0.125 mm) ,细间距锡膏印刷对 SiP 的组装来说变得越来越有挑战性。 对使用不同助焊剂和不同颗粒尺寸锡粉的 3 种锡膏样本进行了研究; 同时通过比较使用平台和真空的板支撑系统,试验了是否可以单独使用平台支撑来获得一致性较好的印刷工艺;并比较了激光切割和电铸钢网在不同开孔尺寸下的印刷结果。SiP 封装技术采取多种裸芯片或模块进行排列组装。北京MEMS封装行价
SiP系统级封装为设备提供了更高的性能和更低的能耗,使电子产品在紧凑设计的同时仍能实现突出的功能。北京陶瓷封装
SIP工艺解析,引线键合封装工艺工序介绍:圆片减薄,为保持一定的可操持性,Foundry出来的圆厚度一般在700um左右。封测厂必须将其研磨减薄,才适用于切割、组装,一般需要研磨到200um左右,一些叠die结构的memory封装则需研磨到50um以下。圆片切割,圆片减薄后,可以进行划片,划片前需要将晶元粘贴在蓝膜上,通过sawwing工序,将wafer切成一个 一个 单独的Dice。目前主要有两种方式:刀片切割和激光切割。芯片粘结,贴装的方式可以是用软焊料(指Pb-Sn合金,尤其是含Sn的合金)、Au—Si低共熔合金等焊接到基板上,在塑料封装中较常用的方法是使用聚合物粘结剂粘贴到金属框架上。北京陶瓷封装
元件密集化,Chip元件密集化,随着SIP元件的推广,SIP封装所需元件数量和种类越来越多,在尺寸受限或不变的前提下,要求单位面积内元件密集程度必须增加。贴片精度高精化,SIP板身元件尺寸小,密度高,数量多,传统贴片机配置难以满足其贴片要求,因此需要精度更高的贴片设备,才能满足其工艺要求。工艺要求越来越趋于极限化,SIP工艺板身就是系统集成化的结晶,但是随着元件小型化和布局的密集化程度越来越高,势必度传统工艺提出挑战,印刷,贴片,回流面临前所未有的工艺挑战,因此需要工艺管控界限向着6 Sigma靠近,以提高良率。SiP可以说是先进的封装技术、表面安装技术、机械装配技术的融合。安徽半导体芯片封装...