利用基团变化导致光刻胶溶解性变差构建负性光刻胶的,还有日本日立公司的Kojima等,他们与日本东京应化工业的研发人员开发了一种枝状单分子树脂分子3M6C-MBSA-BL。3M6C-MBSA-BL内含有γ-羟基羧酸基团,在强酸的作用下,可以发生分子内脱水,由易溶于碱性显影液的羧酸变为难溶于羧酸显影液的内酯,因而可作为负胶使用。Kojima等只检测了其作为电子束光刻胶的性能,获得了40nm线宽的线条,呈现出较好的抗刻蚀性,但它作为EUV光刻胶的能力还有待验证。聚合度越小,发生微相分离的尺寸越小,对应的光刻图形越小。嘉定PCB光刻胶显影
目前使用的ZEP光刻胶即采用了前一种策略。日本瑞翁公司开发的ZEP光刻胶起初用于电子束光刻,常用的商用品种ZEP520A为α-氯丙烯酸甲酯和α-甲基苯乙烯的1∶1共聚物。氯原子的引入可提高灵敏度,此外苯乙烯部分也可提高抗刻蚀性和玻璃化转变温度。采用后一种策略时,常用的高分子主链有聚碳酸酯和聚砜。2010年,美国纽约州立大学的课题组报道了一系列以聚碳酸酯高分子为主体材料的光刻胶,高分子主链中具有二级或三级烯丙酯结构可在酸催化下裂解形成双键和羧酸。此外,他们还在高分子中引入了芳香基团,以增强其抗刻蚀性。可获得36nm线宽、占空比为1∶1的线条,22.5mJ·cm−2的剂量下可获得线宽为26nm的线条。江浙沪半导体光刻胶显示面板材料光刻胶通常是以薄膜形式均匀覆盖于基材表面。
中美贸易摩擦:光刻胶国产代替是中国半导体产业的迫切需要;自从中美贸易摩擦依赖,中国大陆积极布局集成电路产业。在半导体材料领域,光刻胶作为是集成电路制程技术进步的“燃料”,是国产代替重要环节,也是必将国产化的产品。光刻是半导制程的重要工艺,对制造出更先进,晶体管密度更大的集成电路起到决定性作用。每一代新的光刻工艺都需要新一代的光刻胶技术相匹配。现在,一块半导体芯片在制造过程中一般需要进行10-50道光刻过程。其中不同的光刻过程对于光刻胶也有不一样的具体需求。光刻胶若性能不达标会对芯片成品率造成重大影响。
构建负胶除了可通过改变小分子本身的溶解性以外,还可以利用可发生交联反应的酸敏基团实现分子间的交联,从而改变溶解度。Henderson课题组报道了一系列含有环氧乙烷基团的枝状单分子树脂。环氧乙烷基团在酸的作用下发生开环反应再彼此连接,从而可形成交联网状结构,使光刻胶膜的溶解性能降低,可作为负性化学放大光刻胶。通过增加体系内的芳香结构来进一步破坏分子的平面性,可以获得更好的成膜性和提高玻璃化转变温度;同时,每个分子上的环氧基团从两个增加为四个后,灵敏度提高了,分辨率也有所提高。根据应用领域不同,光刻胶可分为 PCB 光刻胶、LCD 光刻胶和半导体光刻胶,技术门槛逐渐递增。
抗蚀性即光刻胶材料在刻蚀过程中的抵抗力。在图形从光刻胶转移到晶片的过程中,光刻胶材料必须能够抵抗高能和高温(>150℃)而不改变其原有特性 。在后续的刻蚀工序中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力 。在湿法刻蚀中,印有电路图形的光刻胶需要连同硅片一同置入化学刻蚀液中,进行很多次的湿法腐蚀。只有光刻胶具有很强的抗蚀性,才能保证刻蚀液按照所希望的选择比刻蚀出曝光所得图形,更好体现器件性能。在干法刻蚀中,例如集成电路工艺中在进行阱区和源漏区离子注入时,需要有较好的保护电路图形的能力,否则光刻胶会因为在注入环境中挥发而影响到注入腔的真空度。此时注入的离子将不会起到其在电路制造工艺中应起到的作用,器件的电路性能受阻。光刻胶又称光致抗蚀剂,是一种对光敏感的混合液体。浦东光聚合型光刻胶树脂
光刻胶行业的上下游合作处于互相依存的关系,市场新进入者很难与现有企业竞争,签约新客户的难度高。嘉定PCB光刻胶显影
此外,光刻胶也可以用于液晶平板显示等较大面积电子产品的制作。90年代后半期,遵从摩尔定律的指引,半导体制程工艺尺寸开始缩小到0.35um(350nm)以下,因而开始要求更高分辨率的光刻技术。深紫外光由于波长更短,衍射作用小,所以可以用于更高分辨率的光刻光源。随着 KrF、ArF等稀有气体卤化物准分子激发态激光光源研究的发展,248nm(KrF)、193nnm(ArF)的光刻光源技术开始成熟并投入实际使用。然而,由于 DQN 体系光刻胶对深紫外光波段的强烈吸收效应,KrF和ArF作为光刻气体产生的射光无法穿透DQN光刻胶,这意味着光刻分辨率会受到严重影响。因此深紫外光刻胶采取了与i-line和g-line光刻胶完全不同的技术体系,这种技术体系被称为化学放大光阻体系(Chemically Amplified Resist, CAR)。嘉定PCB光刻胶显影