光刻胶基本参数
  • 品牌
  • 蔚云
  • 型号
  • 25KG/桶
光刻胶企业商机

目前使用的ZEP光刻胶即采用了前一种策略。日本瑞翁公司开发的ZEP光刻胶初用于电子束光刻,常用的商用品种ZEP520A为α-氯丙烯酸甲酯和α-甲基苯乙烯的1∶1共聚物。氯原子的引入可提高灵敏度,此外苯乙烯部分也可提高抗刻蚀性和玻璃化转变温度。采用后一种策略时,常用的高分子主链有聚碳酸酯和聚砜。2010年,美国纽约州立大学的课题组报道了一系列以聚碳酸酯高分子为主体材料的光刻胶,高分子主链中具有二级或三级烯丙酯结构可在酸催化下裂解形成双键和羧酸。此外,他们还在高分子中引入了芳香基团,以增强其抗刻蚀性。可获得36nm线宽、占空比为1∶1的线条,22.5mJ·cm−2的剂量下可获得线宽为26nm的线条。按曝光波长可分为紫外光刻胶、深紫外光刻胶、极紫外光刻胶、电子束光刻胶、离子束光刻胶、X射线光刻胶等。昆山光交联型光刻胶溶剂

荷兰光刻高级研究中心的Brouwer课题组进一步优化了锡氧纳米簇的光刻工艺。他们发现后烘工艺可以大幅提高锡氧纳米簇光刻胶的灵敏度。尽管锡氧纳米簇的机理是非化学放大机理,但曝光后产生的活性物种仍然有可能在加热状态下继续进行反应。俄勒冈州立大学的Herman课题组制备了一种电中性的叔丁基锡Keggin结构(β-NaSn13)纳米簇。这一类的光刻胶在含氧气氛下的灵敏度远高于真空环境下的灵敏度,这可能与分子氧生成的反应活性氧物种有关。浦东湿膜光刻胶单体能量(光和热)可以活化光刻胶。

尽管HSQ可以实现较好的EUV光刻图案,且具有较高的抗刻蚀性能,但HSQ较低的灵敏度无法满足EUV光刻的需求,且价格非常昂贵,难以用于商用的EUV光刻工艺中。另外,尽管HSQ中Si含量很高,但由于O含量也很高,所以HSQ并未展现含Si光刻胶对EUV光透光性的优势,未能呈现较高的对比度。因此,研发人员将目光转向侧基修饰的高分子光刻胶。使用含硅、含硼单元代替高分子光刻胶原本的功能性含氧侧基,既可有效降低光刻胶对EUV光的吸收,又有助于提高对比度,也可提高抗刻蚀性。

高分子化合物是早被应用为光刻胶的材料。中文“光刻胶”的“胶”字初对应于“橡胶”,而至今英文中也常将光刻胶主体材料称为“resin”(树脂),其背后的缘由可见一斑。按照反应机理,高分子光刻胶基本可以分为两类:化学放大光刻胶和非化学放大光刻胶。化学放大机理初由美国IBM公司于1985年提出,后来被广泛应用于KrF及更的光刻工艺中。化学放大光刻胶的光敏剂为光致产酸剂,主体材料中具有在酸作用下可以离去的基团,如叔丁氧羰基酯、金刚烷酯等。在光照下,光致产酸剂生成一分子的酸,使一个离去基团发生分解反应,原本的酯键变成羟基(通常是酚羟基),同时又产生一分子的酸;新产生的酸可以促使另一个离去基团发生反应;如此往复,形成链式反应。光刻胶通过光化学反应,经曝光、显影等光刻工序将所需要的微细图形从光罩(掩模版)转移到待加工基片上。

在Shirota等的工作基础之上,2005年起,美国康奈尔大学的Ober课题组将非平面树枝状连接酸敏基团的策略进一步发展,设计并合成了一系列用于EUV光刻的单分子树脂光刻胶,这些光刻胶分子不再局限于三苯基取代主要,具有更复杂的枝状拓扑结构。三级碳原子的引入使其更不易形成晶体,有助于成膜性能的提高;更复杂的拓扑结构,也便于在分子中设置数量不同的酸敏基团,有利于调节光刻胶的灵敏度。他们研究了后烘温度、显影剂浓度等过程对单分子树脂材料膨胀行为的影响,获得20nm分辨率的EUV光刻线条,另外,他们也研究了利用超临界CO2作为显影剂的可能性。彩色玻璃也可以保护光刻胶。嘉定KrF光刻胶光致抗蚀剂

光刻胶是IC制造的重要耗材。昆山光交联型光刻胶溶剂

起初应用于 EUV 光刻的光刻胶为聚甲基丙烯酸甲酯(PMMA)。PMMA曾广泛应用于193nm光刻和电子束光刻工艺中,前者为EUV的前代技术,后者的反应机理与EUV光刻有较多的相似点。PMMA具有较高的透光性和成膜性、较好的黏附性,通常应用为正性光刻胶。在光子的作用下,PMMA发生主链碳-碳键或侧基酯键的断裂,形成小分子化合物于显影液。早在1974年,Thompson等就利用PMMA作为光刻胶,研究了其EUV光刻性能。随后,PMMA成为了重要的工具光刻胶。昆山光交联型光刻胶溶剂

与光刻胶相关的文章
与光刻胶相关的产品
与光刻胶相关的资讯
与光刻胶相关的**
与光刻胶相关的标签
产品推荐
相关资讯
信息来源于互联网 本站不为信息真实性负责