加强光刻胶的机理研究,对新型光刻胶的设计开发、现有光刻技术的改进都是大有裨益的。另外,基础研究也需要贴合产业发展的实际和需求,如含铁、钴的光刻胶,尽管具有较好的光刻效果,但由于铁、钴等元素在硅基底中扩散速度很快,容易造成器件的污染,基本没有可能投入到产业的应用中去。光刻胶的研发和技术水平,能够影响一个国家半导体工业的健康发展。2019年,日本就曾经通过限制EUV光刻胶出口来制约韩国的芯片生产。因此,唯有加强我国自主的光刻胶研发,随着光刻技术的发展,不断开发出新材料、新配方、新工艺,才能保证我国的半导体工业的快速和健康发展。光刻胶是IC制造的重要耗材。江苏湿膜光刻胶光引发剂
除了使用小分子作为金属氧化物配体的光刻胶之外,Gonsalves课题组还报道了一种以聚合物作为配体的体系。他们以甲基丙烯酸配体的HfO2纳米颗粒和带有硫鎓盐的甲基丙烯酸酯为原料,进行自由基聚合反应,使HfO2纳米颗粒的配体变为侧基带有硫鎓盐的聚甲基丙烯酸甲酯,光照后,硫鎓盐变成硫醚,在水性显影液中无法溶解,从而实现负性光刻。金属纳米颗粒一方面作为天线,有助于提高光刻胶的灵敏度;另一方面也可以提高抗刻蚀性。但是该光刻胶未获得分辨率优于40nm的图形,可能是因为该体系与基底的黏附力不佳。苏州g线光刻胶单体光刻胶所属的微电子化学品是电子行业与化工行业交叉的领域,是典型的技术密集行业。
三苯基硫鎓盐是常用的EUV光刻胶光致产酸剂,也具有枝状结构。佐治亚理工的Henderson课题组借鉴主体材料键合光敏材料的思路,制备了一种枝状单分子树脂光刻胶TAS-tBoc-Ts。虽然他们原本是想要合成一种化学放大型光刻胶,但根据是否后烘,TAS-tBoc-Ts既可呈现负胶也可呈现正胶性质。曝光后若不后烘,硫鎓盐光解形成硫醚结构,生成的光酸不扩散,不会引发t-Boc的离去;曝光区域不溶于水性显影液,未曝光区域为离子结构,微溶于水性显影液,因而可作为非化学放大型负性光刻胶。曝光后若后烘,硫鎓盐光解产生的酸引发链式反应,t-Boc基团离去露出酚羟基;使用碱性显影液,曝光区域的溶解速率远远大于未曝光区域,因此又可作为化学放大型正性光刻胶。这个工作虽然用DUV光刻和电子束光刻测试了此类光刻胶的光刻性能,但由于EUV光刻机理与电子束光刻的类似性,本工作也为新型EUV光刻胶的设计开辟了新思路。
EUV光刻胶的基本原理与所有使用其他波长光曝光的光刻胶是相同的,都是在光照后发生光化学反应及热化学反应,主体材料结构改变导致光刻胶溶解度转变,从而可以被部分显影。但与其他波长曝光的光刻工艺相比,EUV光刻也有着诸多的不同。从化学反应机理来看,EUV光刻与前代光刻差异是,引发反应的,不仅有光子,还有由13.5nm软X射线激发出的二次电子。EUV光刻用到的光子能量高达92eV,曝光过程中,几乎所有的原子都能吸收EUV光子而发生电离,并产生高能量的二次电子(65~87eV)和空穴,二次电子可以继续激发光敏剂,形成活性物种。在PCB行业:主要使用的光刻胶有干膜光刻胶、湿膜光刻胶、感光阻焊油墨等。
2014年,Gonsalves课题组在侧基连接硫鎓盐的高分子光刻胶基础之上,制备了一种侧基含有二茂铁基团高分子光刻胶。其反应机理与不含二茂铁的光刻胶类似,但二茂铁的引入增强了光刻胶的热稳定性和灵敏度,可实现25nm线宽的曝光。2015年,课题组报道了一系列钯和铂的配合物,用于正性EUV曝光。配合物中包括极性较大的草酸根配体,也有极性较小的1,1-双(二苯基膦)甲烷或1,2-二(二苯基膦)乙烷配体。EUV曝光后,草酸根分解形成二氧化碳或一氧化碳,配体只剩下低极性部分,从而可以用低极性的显影液洗脱;未曝光区域由于草酸根的存在,无法溶于显影液,实现正性曝光。这一系列配合物中,灵敏度较高的化合物为1,2-二(二苯基膦)乙烷配草酸钯,可以在50mJ·cm−2的剂量下得到30nm的线宽。当光刻胶曝光于特定波长的光线时,DNQ分子吸收光能产生反应生成1-羧基-3-磺酰基苯并茚,改变了它的溶解性。嘉定TFT-LCD正性光刻胶曝光
光刻胶工艺不断进步,国内光刻胶企业逐渐崛起。江苏湿膜光刻胶光引发剂
正性光刻胶,树脂是一种叫做线性酚醛树脂的酚醛甲醛,提供光刻胶的粘附性、化学抗蚀性,当没有溶解抑制剂存在时,线性酚醛树脂会溶解在显影液中;感光剂是光敏化合物(PAC,Photo Active Compound),常见的是重氮萘醌(DNQ),在曝光前,DNQ 是一种强烈的溶解抑制剂,降低树脂的溶解速度。在紫外曝光后,DNQ 在光刻胶中化学分解,成为溶解度增强剂,大幅提高显影液中的溶解度因子至100或者更高。这种曝光反应会在 DNQ 中产生羧酸,它在显影液中溶解度很高。正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率。江苏湿膜光刻胶光引发剂