企业商机
传感器企业商机

    自主机器人导航中,可靠的里程计估计至关重要,但隧道、长走廊等无几何特征环境会导致激光雷达点云退化,传统激光雷达-惯性测量单元(LiDAR-IMU)里程计易出现误差累积。对于滑移转向机器人,轮式里程计虽能提供补充约束,但车轮打滑、横向运动等复杂动作会引发非线性误差,且误差受地形影响较大,传统线性模型难以描述。近日,日本东北大学与产业技术综合研究所(AIST)团队在《RoboticsandAutonomousSystems》期刊发表其成果,提出一种紧密耦合的LiDAR-IMU-轮式里程计算法。该算法创新融入神经网络在线训练,通过因子图优化实现传感器融合与运动学模型学习的统一。研究设计的神经网络分为离线和在线学习模块,离线模块预训练捕捉地形无关特征,在线模块实时适配地形动态变化,同时提出神经自适应里程计因子,确保模型约束与传感器数据一致性。实验验证显示,该算法在点云退化、车轮大幅打滑等极端场景下表现稳健,在8种不同地形及3类复杂测试序列中,轨迹误差(ATE)和相对轨迹误差(RTE)均优于现有主流方法,较固定网络模型精度提升超一倍,且处理耗时为秒,满足实时应用需求。该技术为GNSS缺失环境下的机器人导航提供了新方案。 IMU传感器在使用前通常需要进行校准,以提高测量精度并减少系统误差。高精度IMU传感器模块

高精度IMU传感器模块,传感器

    3D人体姿态估计在步态分析、疗愈监测等临床场景中应用宽广,但现有基于相机和惯性测量单元(IMU)的方法需大量设备,要么依赖多相机系统成本高昂、空间受限,要么需佩戴多个IMU不便患者活动,且易受遮挡影响导致估计精度下降。近日,东京工业大学团队在《EngineeringApplicationsofArtificialIntelligence》期刊发表研究成果,提出一种低成本、高鲁棒性的3D人体姿态估计方案。该方案需单目相机和少量IMU,创新性设计Occ-Corrector语义卷积神经网络,通过Sensor-Reshape层实现传感器数据效率融合,避免过度调整;采用交替损失函数训练策略,提升复杂姿态预测精度。同时,通过对权重矩阵的逆分析确定IMU重要性排序,结合人体对称性原则精简设备数量。实验基于TotalCapture数据集,模拟临床常见的持续遮挡和变化遮挡场景验证。结果显示,需5个IMU(集中于上臂和大腿部位),即可保持与13个IMU相近的遮挡鲁棒性,姿态估计平均关节误差(P-MPJPE)稳定,遮挡误差增幅(IROCN),与多设备方案性能相当。该方案硬件需求低、佩戴便捷,明显解决临床场景中设备复杂、遮挡干扰等痛点。未来团队计划拓展至多人实时姿态估计,并探索在诊断、疗愈设备使用等临床场景的实际应用。 进口IMU传感器参数如何选择惯性传感器的量程?

高精度IMU传感器模块,传感器

近日,美国研究团队成功研发了一种创新的实时运动捕捉系统,巧妙结合了IMU技术,旨在有效应对无线数据传输中的数据丢失问题。实验中,科研团队采用IMU传感器,将其分布在运动员的身体关键部位,实时监测并记录运动时的加速度和角度变化情况。即使在高达20%的数据丢失率下,IMU传感器仍能保持较高精度的运动捕捉。研究结果显示,无论数据丢失率如何,尤其是在高数据丢失率的情况下,IMU传感器仍能保持较高的运动捕捉精度,揭示了数据丢失对运动捕捉的影响。这也证明IMU在应对无线数据丢失方面扮演着重要角色,有望推动运动捕捉技术向更高精度和鲁棒性水平发展。

    中国台湾大学的科研团队提出一种基于惯性测量单元(IMU)和机器学习的奶牛日常行为模式识别系统,为奶牛监测和繁殖管理提供了解决方案。该系统将9轴IMU传感器集成于奶牛颈部项圈,采集躺卧、站立、行走、饮水、采食、反刍及其他行为的运动数据,经人工结合视频标注后,通过窗口切片、特征提取、特征选择和归一化四步处理构建行为识别模型。实验对比SVM、随机森林和XGBoost三种算法,终XGBoost模型表现优,采用58个精选特征(含时域和频域特征)实现的整体F1分数,其中反刍()、躺卧()和饮水()行为识别精度高,“其他”行为()精度低。系统采用5Hz采样频率、30秒时间窗口和90%窗口重叠率,结合滑动窗口投票校正的后端优化策略,在线测试中每日行为识别总误差,各奶牛的行为时间分配与已有研究统计一致,适用于实际牧场应用场景。 响应时间对惯性传感器性能有何影响?

高精度IMU传感器模块,传感器

    新西兰奥克兰大学的科研团队采用搭载惯性测量单元(IMU)的智能沉积物颗粒(SSP),开展水槽实验探究口袋几何形状对粗颗粒泥沙起动的影响,为砾石河床泥沙输移建模提供了新视角。实验在固定球形床面上设置鞍形和颗粒顶部两种口袋构型,通过IMU实时采集60mm直径颗粒起动过程中的三轴加速度和角速度数据,结合声学多普勒测速仪(ADV)测量近床流场。结果表明,完全淹没条件下,水流深度对起动阈值影响极小,而口袋几何形状起主导作用:鞍形构型所需临界流速更低(均值≈m/s),但产生更强的旋转冲量,比较大旋转动能达×10⁻⁴J;颗粒顶部构型因下游颗粒阻挡,临界流速更高(均值≈m/s),却能引发更持久的翻滚运动。IMU数据揭示了水动力作用与颗粒旋转动力学的耦合关系,两种构型的拖曳系数(C_D≈)和升力系数(C_L≈)基本一致,验证了几何形状主要影响起动阈值和运动轨迹,而非内在水动力特性。该研究为基于物理机制的泥沙输移模型提供了精细化参数支持。导航传感器的价格范围是多少?上海角度传感器推荐

IMU传感器能否与其他传感器结合使用?高精度IMU传感器模块

地面反作用力(GRF)是理解运动力学、评估肌肉骨骼负荷的关键,但传统实验室测力板难以推广至日常场景。惯性测量单元(IMU)虽便携,却无法直接捕捉 GRF—德国科研团队通过卷积神经网络(CNN),解决了这一难题。研究招募 20 名参与者,完成走路、爬楼梯、跑步、转弯等 6 种运动,测试不同 IMU 配置(下半身 7 个、单腿 4 个、胫骨 / 骨盆 1 个等)的 3D GRF 预测效果。结果显示:垂直 GRF(vGRF)预测准(相关系数 r≥0.98,相对误差≤7.44%),前后向 GRF 次之(r≥0.92),侧向 GRF 难度高(r≥0.74)。日常运动如走路,单传感器(如胫骨)与多传感器效果相当;但转弯等复杂运动时,下半身或单腿多传感器能降低侧向 GRF 误差。骨盆传感器效果略逊,却仍能满足日常 vGRF 预测需求。该研究表明,单传感器(如胫骨)因简便、低成本,适合日常运动评估;复杂运动需多传感器提升准确性。这为 IMU 在临床步态分析、运动监测中的应用提供了参考,平衡了技术准确度与实用价值。高精度IMU传感器模块

传感器产品展示
  • 高精度IMU传感器模块,传感器
  • 高精度IMU传感器模块,传感器
  • 高精度IMU传感器模块,传感器
与传感器相关的**
与传感器相关的标签
信息来源于互联网 本站不为信息真实性负责