企业商机
WILLSEMI韦尔基本参数
  • 品牌
  • WILLSEMI韦尔
  • 型号
  • WILLSEMI韦尔
  • 封装形式
  • DIP,PGA,TQFP,SMD,MCM,PQFP,BGA,SDIP,TSOP,QFP,SOP/SOIC,QFP/PFP,CSP,PLCC
  • 导电类型
  • 单极型,双极型
  • 封装外形
  • 扁平型,单列直插式,双列直插式,金属壳圆形型
  • 集成度
  • 小规模(<50),中规模(50~100),大规模(100~10000),超大规模(>10000)
WILLSEMI韦尔企业商机

    WNM2020是一款N沟道增强型MOS场效应晶体管。它采用了先进的沟槽技术和设计,以在低栅极电荷下提供出色的RDS(ON)。这款器件非常适合用于DC-DC转换、电源开关和充电电路。标准产品WNM2020是无铅且无卤素的。

    WNM2020是一款高性能的N沟道MOS场效应晶体管,专为高效率的电源管理应用而设计。其采用的先进沟槽技术使得该晶体管在导通状态下具有很低的电阻(RDS(ON)),从而减少了功率损耗并提高了整体效率。同时,低栅极电荷使得该晶体管能够快速响应栅极驱动信号,进一步提高了开关速度。这款晶体管非常适合用于DC-DC转换器,其中高效率的电源开关是至关重要的。

    此外,它还可以用于各种充电电路,如电池充电器和太阳能充电器,以确保能量的有效转换和利用。作为一款标准产品,WNM2020不仅具有出色的电性能,还符合环保要求,不含有铅和卤素等有害物质。这使得它在各种环保法规日益严格的市场中具有广的适用性。总之,WNM2020是一款高性能、高效率且环保的N沟道增强型MOS场效应晶体管,非常适合用于各种电源管理和充电应用。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 ESD5431N-2/TR 静电和浪涌保护(TVS/ESD)封装:DFN1006-2L。代理分销商WILLSEMI韦尔WPM3048

代理分销商WILLSEMI韦尔WPM3048,WILLSEMI韦尔

     WNM6002是一种N型增强型MOS场效应晶体管,利用先进的沟槽和电荷控制设计,提供出色的RDS(ON)和低栅极电荷。这款器件适用于电源开关、负载开关和充电电路。标准产品WNM6002为无铅且不含卤素。小型SOT-323封装。

主要特性:

· 沟槽技术

· 超高密度单元设计

· 适用于高直流电流的优异导通电阻

· 极低的阈值电压

应用领域:

· 继电器、电磁铁、电机、LED等的驱动

· DC-DC转换器电路

· 电源开关

· 负载开关

· 充电电路

    WNM6002N型增强型MOS场效应晶体管是一种高性能、高效能的半导体器件,专为现代电子设备中的电源管理和开关应用而设计。其采用先进的沟槽技术和电荷控制设计,确保了出色的RDS(ON)和低栅极电荷,从而提供了高效的电流控制和低功耗操作。WNM6002的超高密度单元设计使其在高直流电流下仍能保持优异的导通电阻,确保了高效的能量转换和散热。同时,极低的阈值电压保证了快速的开关响应和稳定的性能。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 代理分销商WILLSEMI韦尔WPM3048WPM2019-3/TR 场效应管(MOSFET) 封装:SOT-523-3。

代理分销商WILLSEMI韦尔WPM3048,WILLSEMI韦尔

ESD56151Wxx:电源保护新选择

     ESD56151Wxx双向瞬态电压抑制器,是为现代电子设备中的电源接口设计。它的反向截止电压范围是4.5V至5V,有效保护电路免受过高电压的损害。这款抑制器符合IEC61000-4-5标准,为电路提供强大的浪涌保护,同时遵循IEC61000-4-2标准,提供±30kV的ESD保护。 

     ESD56151Wxx的特点在于其低钳位电压设计,能迅速将电压限制在安全范围内,减少对敏感电子元件的损害。其采用的固态硅技术确保了出色的稳定性和可靠性,确保在长期使用中仍能保持优异的性能。 

     这款ESD适用于各种需要电源保护和管理的应用场景,如便携式电子设备、通信设备、医疗设备以及工业控制系统等。它能从各方面保护电源接口,提高设备稳定性和可靠性,延长使用寿命,降低维修和更换成本。 

     安美斯科技专注于国产电子元器件代理分销。我们非常荣幸能为您推荐ESD56151Wxx这款ESD,并愿意提供样品供您测试。如需更多信息或技术支持,请随时联系我们。

WNMD2171双N沟道、20V、6.0A功率MOSFET

产品描述:

     WNMD2171是一款双N沟道增强型MOSFET场效应晶体管。这款MOSFET的特殊设计使得在电路板上连接其漏极变得不必要,因为MOSFET1和MOSFET2的漏极是内部连接的。该产品采用先进的沟槽技术和设计,提供了出色的导通电阻(RSS(ON))和低栅极电荷。这款器件专为锂离子电池保护电路而设计。WNMD2171采用CSP-4L封装。标准产品WNMD2171是无铅和无卤素的。小型CSP4L封装。

产品特性:

· 沟槽技术

· 超高密度单元设计

· 出色的导通电阻

· 极低的阈值电压

应用领域:

· 锂离子电池保护电路

       WNMD2171是一款采用先进技术的双N沟道MOSFET,特别适用于锂离子电池保护电路。其内部连接的漏极设计简化了电路布局,而优异的导通电阻和极低的阈值电压则提供了高效的电池管理。这款产品的小型CSP-4L封装使其成为空间受限应用中的理想选择。此外,其无铅和无卤素的特点也符合现代环保标准。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 ESD9N5B-2/TR 静电和浪涌保护(TVS/ESD)封装:DFN1006-2。

代理分销商WILLSEMI韦尔WPM3048,WILLSEMI韦尔

WD1502F:28V,2A降压型(Step-Down)直流/直流(DC/DC)转换器

    WD1502F是一款高效率、同步降压型DC-DC转换器。它可以在4.5V至28V的输入电压范围内工作,并提供高达2A的连续输出电流。内部同步功率开关可在不使用外部肖特基二极管的情况下提供高效率。WD1502F以650kHz的固定开关频率工作,并采用脉冲宽度调制(PWM)。在轻负载电流时,它会进入脉冲跳变调制(PSM)操作,以在整个负载电流范围内保持高效率和低输出纹波。WD1502F具有短路保护、热保护和输入欠压锁定功能。它采用TSOT-23-6L封装,为标准无铅和无卤素产品。

其主要特性包括:

· 宽范围4.5V~28V的工作输入电压

· 典型的650kHz开关频率

· 2A连续输出电流

· 低至2μA的关机电流,60μA的静态电流

· 内部5mS软启动

· 峰值效率>94%

· 150mΩ内部功率HSMOSFET开关

· 75mΩ内部同步LSMOSFET开关

· 逐周期过流保护

应用领域包括:

· 12V、24V分布式电源总线供电

· 工业应用

· 白色家电

· 消费类应用

     WD1502F适用于需要高效、紧凑和可靠电源转换的多种应用。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 RB520S30-2/TR 肖特基二极管 封装:SOD-523。代理分销商WILLSEMI韦尔WCR190N65TF

WS72551E-5/TR 运算放大器 封装:SOT-23-5L。代理分销商WILLSEMI韦尔WPM3048

    WL2801E系列是一款高精度、低噪声、高速、低压差CMOS线性稳压器,具有优异的纹波抑制能力。该系列为手机、笔记本电脑和其他便携式设备提供了经济高效的新一代性能。其电流限制器的折回电路不止作为短路保护,还在输出引脚处作为输出电流限制器。

产品特点:

· 输入电压范围:2.7V至5.5V

· 输出电压范围:1.2V至3.3V

· 输出电流:在输出电压小于2V时,典型值为200mA;在输出电压大于2V时,典型值为300mA。

· 电源抑制比(PSRR):在217Hz时达到75dB

· 压差电压:在输出电流为200mA时,压差为170mV

· 静态电流:典型值为70μA

· 关断电流:小于0.1μA

· 推荐电容器:1uF

应用领域:

· MP3/MP4播放器

· 手机和无线电话

· 数码相机

· 蓝牙和无线手持设备

· 其他便携式电子设备

    WL2801E系列以其高精度、低噪声和高效能的特点,为现代便携式设备提供了理想的电源管理解决方案。无论是手机、笔记本电脑还是MP3播放器,它都能确保设备在长时间使用中保持出色的性能和稳定的电力供应。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 代理分销商WILLSEMI韦尔WPM3048

深圳安美斯科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在广东省等地区的电子元器件中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,深圳安美斯科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!

与WILLSEMI韦尔相关的产品
与WILLSEMI韦尔相关的**
与WILLSEMI韦尔相关的标签
信息来源于互联网 本站不为信息真实性负责