光刻胶基本参数
  • 品牌
  • 蔚云
  • 型号
  • 25KG/桶
光刻胶企业商机

除了锡氧纳米簇之外,近年来以锌元素为中心的纳米簇也用于了EUV光刻。第一种锌氧纳米簇光刻胶由法国上阿尔萨斯大学的Soppera课题组在2016年报道。曝光后,锌氧纳米簇发生交联聚集,在曝光区域形成金属-氧-金属网状结构,从而实现负性光刻。随后,Xu等借鉴了这一结构,制备了3-甲基苯基修饰的Zn-mTA,将其用作EUV光刻胶。光致产酸剂产生的酸引发Zn-mTA纳米簇的配体交换,从而改变纳米簇表面的电荷分布,减弱了其在非极性溶剂中的溶解性,实现负性光刻。Zn-mTA呈现出良好的溶解性、成膜均一性,可以在47mJ·cm−2的剂量下获得15nm的光刻线条。由于Zn-mTA具有更小的尺寸和更窄的尺寸分布,因此可以获得比金属氧化物纳米颗粒光刻胶更高的分辨率。氧化物型光刻胶:这种类型的光刻胶由氧化硅或其他窄带隙材料制成。在制造高质量微电子设备时非常有用。上海正性光刻胶单体

化学放大型光刻胶体系中有一个比较大的问题,就是光酸的扩散问题。光酸的扩散会增加光刻过程的图案的粗糙度,进而影响光刻结果的分辨率。而将光致产酸剂与光刻胶主体材料聚合在一起,则有可能解决这一问题。此外,光致产酸剂(特别是离子型光致产酸剂)的化学结构与主体材料相差较大,极易在成膜时发生聚集,导致微区分相现象;而光致产酸剂与光刻胶主体材料共价键合后,分布均匀性可以得到改善,这也有利于获得质量更好的光刻图案。嘉定g线光刻胶其他助剂半导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。

光刻胶主要由主体材料、光敏材料、其他添加剂和溶剂组成。从化学材料角度来看,光刻胶内重要的成分是主体材料和光敏材料。光敏材料在光照下产生活性物种,促使主体材料结构改变,进而使光照区域的溶解度发生转变,经过显影和刻蚀,实现图形从掩模版到基底的转移。对于某些光刻胶来说,主体材料本身也可以充当光敏材料。依据主体材料的不同,光刻胶可以分为基于聚合物的高分子型光刻胶,基于小分子的单分子树脂(分子玻璃)光刻胶,以及含有无机材料成分的有机-无机杂化光刻胶。本文将主要以不同光刻胶的主体材料设计来综述EUV光刻胶的研发历史和现状。

环状单分子树脂中除了杯芳烃类物质以外,还有一类被称为“水车”(Noria)的光刻胶,该类化合物由戊二醛和间苯二酚缩合而成,是一种中心空腔的双层环梯状结构分子,外形像传统的水车,因此得名,起初在2006年时由日本神奈川大学的Nishikubo课题组报道出来。随后,日本JSR公司的Maruyama课题组将Noria改性,通过金刚烷基团保护得到了半周期为22nm的光刻图形。但是这种光刻胶的灵敏度较低、粗糙度较大,仍需进一步改进才能推广应用。我国光刻胶行业起步较晚,生产能力主要集中在 PCB 光刻胶、TN/STN-LCD 光刻胶等中低端产品。

荷兰光刻研究中心的Castellanos课题组采用三氟乙酸配体和甲基丙烯酸配体,制备了一种锌氧纳米簇光刻胶Zn(MA)(TFA)。由于锌原子和三氟乙酸氟原子对 EUV 光都有较强的吸收能力,而甲基丙烯酸配体可通过光照后的双键聚合和交联反应进一步增强曝光前后的溶解度差异。这一配体在自然环境下的稳定性不好,空气中的水汽和自然光都会使甲基丙烯酸配体自发聚合;但在真空环境下则可稳定存在。不过这种纳米颗粒可获得30nm线宽的光刻图案,曝光剂量为37mJ·cm−2,且制备的批次稳定性较差,距离实际应用还有一段距离。光刻胶的国产化公关正在展开,在面板屏显光刻胶领域,中国已经出现了一批有竞争力的本土企业。昆山KrF光刻胶其他助剂

有机-无机杂化光刻胶结合了有机和无机材料的优点,在可加工性、抗蚀刻性、极紫外光吸收具有优势。上海正性光刻胶单体

尽管HSQ可以实现较好的EUV光刻图案,且具有较高的抗刻蚀性能,但HSQ较低的灵敏度无法满足EUV光刻的需求,且价格非常昂贵,难以用于商用的EUV光刻工艺中。另外,尽管HSQ中Si含量很高,但由于O含量也很高,所以HSQ并未展现含Si光刻胶对EUV光透光性的优势,未能呈现较高的对比度。因此,研发人员将目光转向侧基修饰的高分子光刻胶。使用含硅、含硼单元代替高分子光刻胶原本的功能性含氧侧基,既可有效降低光刻胶对EUV光的吸收,又有助于提高对比度,也可提高抗刻蚀性。上海正性光刻胶单体

与光刻胶相关的文章
与光刻胶相关的产品
与光刻胶相关的资讯
与光刻胶相关的**
与光刻胶相关的标签
产品推荐
相关资讯
信息来源于互联网 本站不为信息真实性负责