光刻胶基本参数
  • 品牌
  • 蔚云
  • 型号
  • 25KG/桶
光刻胶企业商机

除了枝状分子之外,环状单分子树脂近年来也得到了迅速发展。这些单分子树脂的环状结构降低了分子的柔性,从而通常具有较高的玻璃化转变温度和热化学稳定性。由于构象较多,此类分子也难以结晶,往往具有很好的成膜性。起初将杯芳烃应用于光刻的是东京科技大学的Ueda课题组,2002年起,他们报道了具有间苯二酚结构的杯芳烃在365nm光刻中的应用。2007年,瑞士光源的Solak等利用对氯甲氧基杯芳烃获得了线宽12.5nm、占空比1∶1的密集线条,但由于为非化学放大光刻胶,曝光机理为分子结构被破坏,灵敏度较差,为PMMA的1/5。对于好的EUV光刻胶目前仍处于研发阶段。华东显示面板光刻胶显影

利用基团变化导致光刻胶溶解性变差构建负性光刻胶的,还有日本日立公司的Kojima等,他们与日本东京应化工业的研发人员开发了一种枝状单分子树脂分子3M6C-MBSA-BL。3M6C-MBSA-BL内含有γ-羟基羧酸基团,在强酸的作用下,可以发生分子内脱水,由易溶于碱性显影液的羧酸变为难溶于羧酸显影液的内酯,因而可作为负胶使用。Kojima等检测了其作为电子束光刻胶的性能,获得了40nm线宽的线条,呈现出较好的抗刻蚀性,但它作为EUV光刻胶的能力还有待验证。华东i线光刻胶光引发剂光刻胶属于技术和资本密集型行业,目前主要技术主要掌握在日、美等国际大公司手中,全球供应市场高度集中。

光刻胶主要由主体材料、光敏材料、其他添加剂和溶剂组成。从化学材料角度来看,光刻胶内重要的成分是主体材料和光敏材料。光敏材料在光照下产生活性物种,促使主体材料结构改变,进而使光照区域的溶解度发生转变,经过显影和刻蚀,实现图形从掩模版到基底的转移。对于某些光刻胶来说,主体材料本身也可以充当光敏材料。依据主体材料的不同,光刻胶可以分为基于聚合物的高分子型光刻胶,基于小分子的单分子树脂(分子玻璃)光刻胶,以及含有无机材料成分的有机-无机杂化光刻胶。本文将主要以不同光刻胶的主体材料设计来综述EUV光刻胶的研发历史和现状。

光刻胶的两大主要研究小组:杨国强课题组和李嫕课题组,分别设计并制备了双酚A型和螺双芴型的单分子树脂化学放大光刻胶,前者可通过调节离去基团的数量来改变光刻胶的灵敏度,后者则通过螺双芴结构降低材料的结晶性,提高了成膜性性能。两种光刻胶都可以实现小于25nm线宽的光刻线条。随后,杨国强课题组还报道了一种可作为负性光刻胶的双酚A单分子树脂光刻胶,该分子中具有未经保护的酚羟基,在光酸的作用下可以与交联剂四甲氧基甲基甘脲反应形成交联网状结构,从而无法被碱性显影液洗脱,可在电子束光刻下实现80nm以下的线条,在EUV光刻中有潜在的应用。此外,两个课题组还分别就两个系列光刻胶的产气情况开展研究。金属氧化物光刻胶使用金属离子及有机配体构建其主体结构,借助光敏基团实现光刻胶所需的性能。

更高的分辨率和抗刻蚀性,合适的灵敏度,更低的粗糙度,依然是研发人员需要继续努力的目标。随着3nm乃至2nm技术节点已经进入半导体工业发展的日程表,实现相应线宽的光刻技术和光刻胶也应该早日成熟。台积电在5nm制程中已经用到了多达14层的EUV光刻,3nm制程对EUV光刻的需求量显然只会更多,要求也只会更高。此外,EUV光刻过程中也有许多机理问题尚需进一步明确,尤其是起步较晚的有机-无机杂化光刻胶,现有光刻机理报道之间常常见到矛盾的论述。我国光刻胶行业起步较晚,生产能力主要集中在 PCB 光刻胶、TN/STN-LCD 光刻胶等中低端产品。嘉定干膜光刻胶光致抗蚀剂

有机-无机杂化光刻胶被认为是实现10nm以下工业化模式的理想材料。华东显示面板光刻胶显影

与EUV光源相比,UV光源更容易实现较高的功率;但UV曝光不能满足辨线条的形成条件。因此PSCAR实际上是利用EUV曝光形成图案,再用UV曝光增加光反应的程度,从而实现提高EUV曝光灵敏度的效果。在初的PSCAR体系基础之上,Tagawa课题组还开展了一系列相关研究,并通过在体系中引入对EUV光敏感的光可分解碱,开发出了PSCAR1.5,引入对UV光敏感的光可分解碱,开发出了PSCAR2.0。光可分解碱的引入可以减少酸扩散,使PSCAR光刻胶体系的对比度提高,粗糙度降低,也进一步提高了光刻胶的灵敏度。华东显示面板光刻胶显影

与光刻胶相关的文章
与光刻胶相关的产品
与光刻胶相关的资讯
与光刻胶相关的**
与光刻胶相关的标签
产品推荐
相关资讯
信息来源于互联网 本站不为信息真实性负责