2005年,IBM公司的Naulleau等利用MET@ALS评测了KRS光刻胶的EUV性能,可获得线宽35nm、占空比1∶1的图案和线宽28.3nm、占空比1∶4的图案(图13。不过,KRS在曝光过程中需要有少量的水参与,因此其曝光设备中需要引入水蒸气。由于EUV光刻需要在高真空环境中进行,任何气体的引入都会导致真空环境的破坏、光路和掩模版的污染,所以尽管KRS呈现出比MET-1K更高的分辨率,但依然未能广泛应用于EUV光刻技术中。上述化学放大光刻胶基本沿用了KrF光刻胶的材料,随着EUV光刻技术的不断进展,旧材料已不能满足需求。光刻区域使用黄色,并用褐色瓶子来储存。普陀光刻胶光致抗蚀剂
在Shirota等的工作基础之上,2005年起,美国康奈尔大学的Ober课题组将非平面树枝状连接酸敏基团的策略进一步发展,设计并合成了一系列用于EUV光刻的单分子树脂光刻胶,这些光刻胶分子不再局限于三苯基取代主要,具有更复杂的枝状拓扑结构。三级碳原子的引入使其更不易形成晶体,有助于成膜性能的提高;更复杂的拓扑结构,也便于在分子中设置数量不同的酸敏基团,有利于调节光刻胶的灵敏度。他们研究了后烘温度、显影剂浓度等过程对单分子树脂材料膨胀行为的影响,获得20nm分辨率的EUV光刻线条,另外,他们也研究了利用超临界CO2作为显影剂的可能性。华东光刻胶光致抗蚀剂光刻胶具有良好的脱模性能才能保证纳米结构的高精度复制以及预防模板沾污。
关于光刻胶膜对EUV光的吸收能力,研究人员的观点曾发生过较大的转变。刚开始研究人员认为光刻胶应对EUV尽量透明,以便EUV光可以顺利透过光刻胶膜。对于紫外、深紫外光刻来说,如果光子不能透过胶膜,则会降低光刻的对比度,即开始曝光剂量和完全曝光剂量之间存在较大的差值,从而使曝光边界处图案不够陡直。所以,早期的EUV光刻胶研发通常会在分子结构中引入Si、B等EUV吸收截面较小的元素,而避免使用F等EUV吸收截面较大的元素。随后研究人员又发现,即使是对EUV光吸收较强的主体材料,还是“过于透明”了,以至于EUV光刻的灵敏度难以提高。因此,科研人员开始转向寻求吸收更强的主体材料,研发出了一系列基于金属元素的有机-无机杂化光刻胶。
荷兰光刻高级研究中心的Brouwer课题组进一步优化了锡氧纳米簇的光刻工艺。他们发现后烘工艺可以大幅提高锡氧纳米簇光刻胶的灵敏度。尽管锡氧纳米簇的机理是非化学放大机理,但曝光后产生的活性物种仍然有可能在加热状态下继续进行反应。俄勒冈州立大学的Herman课题组制备了一种电中性的叔丁基锡Keggin结构(β-NaSn13)纳米簇。这一类的光刻胶在含氧气氛下的灵敏度远高于真空环境下的灵敏度,这可能与分子氧生成的反应活性氧物种有关。在未曝光的光刻胶区域,DNQ作为溶解抑制剂存在,它可以减缓未曝光的光刻胶在显影过程中溶解。
无论是高分子型光刻胶,还是单分子树脂型光刻胶,都难以解决EUV光吸收和抗刻蚀性两大难题。光刻胶对EUV吸收能力的要求曾随着EUV光刻技术的进展而发生改变,而由于EUV光的吸收只与原子有关,因而无论是要透过性更好,还是要吸收更强,只通过纯有机物的分子设计是不够的。若想降低吸收,则需引入低吸收原子;若想提高吸收,则需引入高吸收原子。此外,由于EUV光刻胶膜越来越薄,对光刻胶的抗刻蚀能力要求也越来越高,而无机原子的引入可以增强光刻胶的抗刻蚀能力。于是针对EUV光刻,研发人员设计并制备了一大批有机-无机杂化型光刻胶。这类光刻胶既保留了高分子及单分子树脂光刻胶的设计灵活性和较好的成膜性,又可以调节光刻胶的EUV吸收能力,增强抗刻蚀性。i线光刻胶主要成分包括感光剂、树脂、溶剂和添加剂等。嘉定g线光刻胶其他助剂
产品纯度、金属离子杂质控制等也是光刻胶生产工艺中需面临的技术难关,光刻胶纯度不足会导致芯片良率下降。普陀光刻胶光致抗蚀剂
全息光刻-单晶硅各向异性湿法刻蚀是制作大高度比硅光栅的一种重要且常用的方法,全息光刻用来产生光刻胶光栅图形,单晶硅各向异性湿法刻蚀将图形转移到硅基底中形成硅光栅。这种方法制作的硅光栅质量非常高,侧壁可以达到原子级光滑,光栅线条的高度比可以高达160。但由于单晶硅各向异性湿法刻蚀在垂直向下刻蚀的同时存在着横向钻蚀,所以要获得大高度比的硅光栅,光刻胶光栅图形的占宽比要足够大,且越大越好。占宽比越大,单晶硅各向异性湿法刻蚀的工艺宽容度越大,成功率越高,光栅质量越好。普陀光刻胶光致抗蚀剂