自主机器人导航中,可靠的里程计估计至关重要,但隧道、长走廊等无几何特征环境会导致激光雷达点云退化,传统激光雷达-惯性测量单元(LiDAR-IMU)里程计易出现误差累积。对于滑移转向机器人,轮式里程计虽能提供补充约束,但车轮打滑、横向运动等复杂动作会引发非线性误差,且误差受地形影响较大,传统线性模型难以描述。近日,日本东北大学与产业技术综合研究所(AIST)团队在《RoboticsandAutonomousSystems》期刊发表其成果,提出一种紧密耦合的LiDAR-IMU-轮式里程计算法。该算法创新融入神经网络在线训练,通过因子图优化实现传感器融合与运动学模型学习的统一。研究设计的神经网络分为离线和在线学习模块,离线模块预训练捕捉地形无关特征,在线模块实时适配地形动态变化,同时提出神经自适应里程计因子,确保模型约束与传感器数据一致性。实验验证显示,该算法在点云退化、车轮大幅打滑等极端场景下表现稳健,在8种不同地形及3类复杂测试序列中,轨迹误差(ATE)和相对轨迹误差(RTE)均优于现有主流方法,较固定网络模型精度提升超一倍,且处理耗时为秒,满足实时应用需求。该技术为GNSS缺失环境下的机器人导航提供了新方案。 通过多轴加速度与陀螺仪数据,IMU 传感器可捕捉桥梁微震动,为工程安全预警提供可靠依据。江西国产传感器

工业管道(如油气管道、市政管网)的内部检测常面临管线弯曲、坡度变化等复杂场景,传统导航系统易出现定位漂移,影响检测精度。近日,某自动化检测设备企业推出搭载高精度IMU的管道检测机器人,提升复杂管线的巡检能力。机器人机身及检测探头处安装多组抗干扰IMU传感器,采样率达800Hz,实时捕捉机器人的姿态变化、行进速度及管线坡度数据。通过与惯性导航算法融合,结合管道内壁的特征匹配,实现定位误差小于±2cm/100米的高精度导航,即使在管线转弯、爬坡等场景下也能稳定输出位置信息。同时,IMU数据可辅助调整机器人的行进姿态,确保检测探头与管道内壁保持比较好距离,提升缺陷识别率。实地测试显示,该机器人在直径50cm的油气管道中完成3公里巡检任务,缺陷漏检率较传统设备降低40%,巡检效率提升25%。目前已应用于石油、化工、市政等领域的管道检测,未来将拓展至长距离海底管道巡检场景。 浙江mems惯性传感器如何确保导航传感器的长期稳定性?

近日,新西兰奥克兰大学等机构团队在《AdvancesinWaterResources》发文,用搭载惯性测量单元(IMU)的“智能泥沙颗粒(SSP)”攻克难题。他们在15米循环水槽设固定球形床面,测试鞍形、颗粒顶部两种凹坑构型下60毫米颗粒起动,采集加速度、角速度等数据,还定义“正脉冲加速度(PIA)”分析动力特性。结果显示,完全淹没时水深对起动阈值几乎无影响,凹坑构型起决定作用:鞍形构型起动临界流速低(平均),旋转冲量强但运动后快停滞;颗粒顶部构型因下游颗粒阻挡,临界流速高(平均),却能引发持久翻滚。研究还发现净升力对起动作用强于拖曳力,两种构型水动力系数稳定(Cd≈、Cl≈)。该研究率先精度量化凹坑几何与泥沙起动动力学关系,为物理基泥沙输运模型提供支撑,对河道治理、水利设计意义重大。团队表示,未来将拓展试验条件,贴合自然河流环境。
柔性机械臂因重量轻、功率重量比高,主要用于航空、工业等领域,但结构柔性使其控制难度大——传统采用偏微分方程(PDE)建模,计算复杂难以实时应用。近日,研究人员提出用惯性测量单元(IMU)传感器网络解决这一问题:将柔性臂拆分为多个虚拟刚性段,通过IMU采集每个段的加速度与角速度数据,结合互补滤波处理传感器漂移和噪声,准确估算各段姿态与位置,将柔性臂动力学简化为易实时计算的普通微分方程(ODE)模型。基于此模型,研究人员设计鲁棒模型预测控制(RSMPC)策略,无需复杂PDE计算即可实现实时控制。实验用4.5米长的柔性液压机械臂验证:IMU估算的端点位置与激光测量结果一致性高,控制效果优于PID、PDE等方法,且输入更平滑。该方法为柔性机械臂的实时控制提供了实用路径,未来可结合模态分析减少IMU使用数量,或适配不同边界条件,推动柔性机械臂更主要应用。如何选择适合机器人应用的IMU?

中挪联合科研团队提出一种基于惯性测量单元(IMU)的6自由度(6-DOF)相机运动校正方法,解决了摄影测量和光学测量中环境干扰(如风、地面振动)导致的相机抖动问题。该方法依赖IMU传感器,通过卡尔曼滤波融合加速度计、陀螺仪和磁力计数据,估算相机的三轴旋转(横滚、俯仰、偏航)和三轴平移(前冲、侧移、升降)运动;构建6个相机模型,分别计算各自由度运动引发的像素偏移,终从图像序列中剔除抖动噪声。实验验证表明,该方法运动校正率约80%,物体距离(3-12m)对校正效果影响极小;100mm焦距镜头的校正率()略优于50mm镜头();像素抖动噪声中90%以上由相机旋转引起,旋转诱导的像素偏移与物体距离无关,而平移诱导的偏移与物体距离呈负相关。该方法无需依赖静态参考点,部署简便,适用于桥梁监测、无人机测量等多种光学测量场景。 IMU传感器的主要功能是什么?国产平衡传感器哪家好
角度传感器是否支持无线通信?江西国产传感器
近日,美国研究团队成功研发了一种创新的实时运动捕捉系统,巧妙结合了IMU技术,旨在有效应对无线数据传输中的数据丢失问题。实验中,科研团队采用IMU传感器,将其分布在运动员的身体关键部位,实时监测并记录运动时的加速度和角度变化情况。即使在高达20%的数据丢失率下,IMU传感器仍能保持较高精度的运动捕捉。研究结果显示,无论数据丢失率如何,尤其是在高数据丢失率的情况下,IMU传感器仍能保持较高的运动捕捉精度,揭示了数据丢失对运动捕捉的影响。这也证明IMU在应对无线数据丢失方面扮演着重要角色,有望推动运动捕捉技术向更高精度和鲁棒性水平发展。江西国产传感器