卫星姿态估计是空间任务成功的关键,直接影响传感器指向、天线对准及轨道机动精度。传统卫星姿态测量系统常依赖复杂且昂贵的设备,对于纳米卫星、立方星等低成本航天器而言,亟需低成本、高可靠性的姿态估计方案,同时要解决传感器数据噪声、卫星与地面站通信稳定性等问题。近日,尼泊尔工程团队在《Measurement:Sensors》期刊发表研究成果,提出一种基于IMU传感器、卡尔曼滤波及RF-433MHz通信的低成本卫星姿态估计系统。该系统以BNO-055九轴IMU传感器为关键,采集卫星滚转、俯仰、偏航数据,通过扩展卡尔曼滤波(EKF)过滤噪声,结合4匝螺旋天线与RF-433MHz收发模块实现卫星与地面站的稳定通信,利用Matplotlib库完成姿态数据的实时可视化。 IMU(惯性测量单元)可实时采集物体的加速度、角速度和姿态角数据,为运动状态分析提供支撑。浙江六轴惯性传感器生产厂家

我国的一支科研团队设计并校准了一种内嵌微机电系统惯性测量单元(MEMS-IMU)的球形传感器颗粒,实现了与实心球体的运动学等效,这为均质致密颗粒实验中粒子运动信息的测量提供了更具代表性的工具。该传感器颗粒直径40毫米,采用双层球形结构,确保在形状、密度、质心位置、转动惯量和弹性模量等关键参数上与等直径7075系列实心铝球一致,可测量±16g的三轴加速度和±2000°/s的三轴角速度,以1000Hz的高采样率持续工作一小时。研究通过单摆实验验证了传感器颗粒质心与几何中心重合,经自由落体、旋转测试完成了加速度计和陀螺仪的校准,其密度差异小于,转动惯量差异在4%以内。静水中自由沉降实验进一步证实,该传感器颗粒的运动轨迹和速度特性与实心铝球高度一致,且经过24小时耐候性测试展现出良好的稳定性和耐用性。这种低成本、运动学等效的传感器颗粒,为颗粒物质统计力学实验提供了可靠的示踪工具,推动了颗粒追踪技术的发展。 浙江6轴惯性传感器推荐便携型 IMU 重量轻、体积小,适配穿戴式与手持设备场景。

一支科研团队提出了一种基于消费级IMU设备(智能手机、智能手表、无线耳机)的日常步态分析方法,解决了传统步态分析依赖实验室环境和设备的局限性。该研究招募16名受试者(平均年龄岁),采集步行、慢跑、上下楼梯四种步态数据,测试了智能手机放在口袋、背包、肩包三种携带场景,通过iPhone14、AppleWatchSeries10、AirPodsPro的IMU传感器(加速度计+陀螺仪)收集数据,并以Xsens动作捕捉系统作为真值参考。数据经标准化和主成分分析(PCA)降维后,采用一种基于滑动窗口的新型算法进行步态分割与分组,通过连续性匹配分数(CMS)同时评估序列连续性和匹配质量。实验结果显示,算法整体分割准确率达,智能手机放口袋时性能比较好(),单一步态类型分析准确率更高(步行、慢跑);Rand验证了分组的可靠性,在背包等动态携带场景下略有下降。该方法利用普及的消费级设备实现了真实场景下的多类型步态分析,为监测、运动科学等领域的大规模步态研究提供了实用且低成本的解决方案。
我国的一支科研团队提出了一种深度学习辅助的模型基紧密耦合视觉-惯性姿态估计方法,解决了视觉失效场景下的头部旋转运动姿态估计难题,对虚拟现实、增强现实、人机交互等领域的高精度姿态感知具有重要意义。该方法基于多状态约束卡尔曼滤波(MSCKF)构建视觉-惯性紧密耦合框架,整合了传统模型基方法与深度学习技术:设计轻量化扩张卷积神经网络(CNN),实时估计IMU测量的偏差和比例因子修正参数,并将其融入MSCKF的更新机制;同时提出多元耦合运动状态检测(MCMSD)与动态零更新机制相结合的融合策略,通过视觉光流信息与惯性数据的决策级融合实现精细运动状态判断,在静止状态时触发零速度、零角速率等伪测量更新以减少误差累积。实验验证表明,该方法在包含间歇性视觉失效的全程旋转运动中,姿态估计均方根误差(RMSE)低至°,相比传统CKF、IEKF等方法精度明显提升,且单帧更新耗时,兼顾了实时性与鲁棒性。在真实场景测试中,即使相机被遮挡15秒,该方法仍能明显减少IMU漂移,保持稳定的姿态追踪,充分满足实际应用需求。IMU 支持多传感器融合,搭配各类设备提升导航整体可靠性。

人形机器人位置是其运动的关键技术,但非连续支撑、冲击振动及惯性导航漂移等问题,导致传统位置方法难以满足精度需求,且部分方案存在硬件复杂、计算量大等局限。近日,东南大学、新加坡南洋理工大学等团队在《BiomimeticIntelligenceandRobotics》期刊发表研究成果,提出一种基于腿部正向运动学与IMU融合的步态里程计算法。该算法首先建立机器人腿部正向运动学模型,通过D-H参数法求解机身与足部的坐标变换关系;再结合IMU采集的三轴加速度、角速度及欧拉角数据,构建卡尔曼滤波模型,将运动学信息与IMU数据深度融合,实现机器人位置和速度的精细估计。该方案需机器人配备关节编码器和IMU,硬件需求低、计算复杂度小,可适配双足、四足等多种腿部机器人。该算法为室内人形机器人位置提供了有力解决方案,硬件依赖低、适用性广。未来可进一步优化足底滑动补偿策略,提升机器人在复杂地形下的位置鲁棒性。 电竞外设搭载 IMU,实现体感操控与动作映射。上海扫地机器人传感器性能
针对膝关节骨关节患者,IMU 能捕捉关节动态对齐变化,助力 biomechanical 损伤早期评估。浙江六轴惯性传感器生产厂家
临床步态分析中,光学运动捕捉系统(OMC)虽为多段足部模型分析的金标准,但存在空间、成本和时间消耗大的局限,临床适用性受限。基于惯性测量单元(IMU)的步态分析系统虽便捷,却多将足踝视为单一刚性段,难以满足临床对足部分段运动分析的需求。近日,德国慕尼黑大学医学中心团队在《Galt&Posture》期刊发表研究成果,推出一款基于IMU的双段足部模型,并完成其可靠性测试。该模型在传统IMU传感器布置基础上,于跟骨后侧新增一枚传感器,实现对后足与中足运动的分开分析,通过UltiumMotion系统采集胫骨/后足、胫骨/前足、后足/前足在步态周期中的运动学数据,并采用统计参数映射(SPM)和组内相关系数(ICC)评估其评定者间、评定者内及重测可靠性。该模型操作简便、耗时短,可在普通诊室或野外开展,为临床足踝诊断、疗愈效果监测提供了便捷工具。未来团队将进一步开展与OMC系统的对比研究,完善模型以适配问题足型等更多临床场景。 浙江六轴惯性传感器生产厂家